Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
New Journal of Chemistry ; 47(1):17-40, 2022.
Article in English | EMBASE | ID: covidwho-2316894

ABSTRACT

Viruses and other microorganisms can enter water sources from different routes and cause pollution and irreparable damage. So, cost-effective and efficient systems for providing safe water are necessary. Efficient filtration systems based on antimicrobial materials have received a lot of attention in this regard. A wide range of materials play an important role in the production of efficient water filtration systems. Metal and metal oxide particles with anti-viral and antimicrobial properties comprising Cu, Cu2O, Ag, TiO2, and ZnO play a valuable role in the preparation of water filtration systems. Biopolymers such as cellulose or carbon nanomaterials like graphene or its derivatives have been reported to provide safe water. In this review, we summarize the use of diverse materials in the preparation of efficient filtration-based systems like membranes and paper filters for water treatment. Pathogen-containing water samples were effectively disinfected using the prepared water disinfection systems.Copyright © 2023 The Royal Society of Chemistry.

2.
Clean Technol Environ Policy ; 25(4): 1259-1272, 2023.
Article in English | MEDLINE | ID: covidwho-2293821

ABSTRACT

Atmospheric nitrogen oxides ( NO x = NO + NO 2 ) are key pollutants and short-lived climate forcers contributing to acid rain, photochemical smog, aerosol formation and climate change. Exposure to nitrogen dioxide ( NO 2 ) emitted mainly from transportation, causes adverse health effects associated with respiratory illnesses and increased mortality even at low concentration. Application of titanium dioxide ( TiO 2 )-based photocatalysis in urban environment is a new air cleaning solution, activated by sunlight and water vapour to produce OH radicals, able to remove NO x and other pollutants from the planetary boundary layer. This study is a large-scale evaluation of NO x removal efficiency at a near-road environment with applied photocatalytic NOxOFF™ technology on an urban road west of Copenhagen, thus supporting local municipality in meeting their clean-air Agenda 2030. The photocatalytic NOxOFF™ granulate containing TiO 2 nanoparticles was applied on an asphalt road in July 2020 and ambient NO x was measured during a six-month monitoring campaign. It is the first NO x monitoring campaign carried out at this road and specific efforts have been devoted to evaluate the reduction in ambient NO x levels with NOxOFF™-treated asphalt. Several methods were used to evaluate the photocatalytic effect, taking into account analysis limitations such as the short reference period prior to application and the highly uncertain measurement period during which SARS-CoV-2 lockdown measures impacted air quality. There was no statistically significant difference in NO x concentrations between the reference period and the photocatalytic active period and NO removal efficiency resulted in - 0.17 (± 1.27). An upper limit removal of 17.5% NO x was estimated using a kinetic tunnel model. While NO 2 comparison with COPERT V street traffic model projection was roughly estimated to decrease by 39% (± 38%), although this estimate is subject to high uncertainty. The observed annual mean NO 2 concentration complies with Frederiksberg clean-air Agenda 2030 and air quality standards. Graphical abstract: A graphical abstract illustrating the air cleaning properties of TiO 2 -based photocatalytic-treated asphalt.

3.
Huagong Jinzhan/Chemical Industry and Engineering Progress ; 42(2):957-968, 2023.
Article in Chinese | Scopus | ID: covidwho-2254724

ABSTRACT

Now in the context of the novel coronavirus pneumonia outbreak, the control and removal of microbial aerosols has once again attracted academic attention, while conventional air purification methods such as filtration, chemical agents and UV have their own defects and deficiencies. With the advantages of high efficiency, wide spectrum, green, no residue, dynamic continuous disinfection, photocatalysis has broad application prospects. In this paper, the research on the inactivation of microbial aerosols with photocatalysis system is summarized and analyzed from the aspects of the types of photocatalysts, the load of photocatalysts, the light source and the structure and operation of reactors. TiO2 or its derivative materials are selected as photocatalysts in most studies, and more novel and efficient photocatalysts should be applied. Porous, multi-channel and large surface area catalyst carriers can effectively improve the efficiency of photocatalysis system. The light source still depends on UV light, and the application of visible light needs more research. There are few studies on improving the photocatalysis system by optimizing the reactor structure, and the most commonly used is the ring reactor. Researchers have developed photocatalytic air purifiers or combined photocatalysis systems with indoor air duct systems. In the future, photocatalysis system will become an important means for indoor microbial aerosol control. © 2023 Chemical Industry Press. All rights reserved.

4.
Catalysts ; 13(2):434, 2023.
Article in English | ProQuest Central | ID: covidwho-2252369

ABSTRACT

The photocatalytic degradation of the emerging contaminant paracetamol in aqueous solution has been studied under 1 SUN (~1000 W m−2) in the presence of four commercial TiO2 powders, namely sub-micrometric anatase and rutile, and nanometric brookite and P25 (the popular anatase/rutile mixture used as a benchmark in most papers). The rutile powder showed low activity, whereas, interestingly, the anatase and the brookite powders outperformed P25 in terms of total paracetamol conversion to carboxylic acids, which, according to the literature, are the final products of its degradation. To explain such results, the physicochemical properties of the powders were studied by applying a multi-technique approach. Among the physicochemical properties usually affecting the photocatalytic performance of TiO2, the presence of some surface impurities likely deriving from K3PO4 (used as crystallization agent) was found to significantly affect the percentage of paracetamol degradation obtained with the sub-micrometric anatase powder. To confirm the role of phosphate, a sample of anatase, obtained by a lab synthesis procedure and having a "clean” surface, was used as a control, though characterized by nanometric particles and higher surface area. The sample was less active than the commercial anatase, but it was more active after impregnation with K3PO4. Conversely, the presence of Cl at the surface of the rutile did not sizably affect the (overall poor) photocatalytic activity of the powder. The remarkable photocatalytic activity of the brookite nanometric powder was ascribed to a combination of several physicochemical properties, including its band structure and nanoparticles size.

5.
Biotechnol Lett ; 45(4): 551-561, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2271310

ABSTRACT

PURPOSE: We examined the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by a nitrogen-doped titanium dioxide (N-TiO2) visible-light photocatalyst that was activated via light irradiation in the natural environment and was safe for human use as a coating material. METHODS: The photocatalytic activity of glass slides coated with three types of N-TiO2 without metal or loaded with copper or silver and copper was investigated by measuring acetaldehyde degradation. The titer levels of infectious SARS-CoV-2 were measured using cell culture after exposing photocatalytically active coated glass slides to visible light for up to 60 min. RESULTS: N-TiO2 photoirradiation inactivated the SARS-CoV-2 Wuhan strain and this effect was enhanced by copper loading and further by the addition of silver. Hence, visible-light irradiation using silver and copper-loaded N-TiO2 inactivated the Delta, Omicron, and Wuhan strains. CONCLUSION: N-TiO2 could be used to inactivate SARS-CoV-2 variants, including emerging variants, in the environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Nitrogen Dioxide , Silver , Copper , Light , Titanium/radiation effects , Nitrogen , Catalysis
6.
Environ Chem Lett ; : 1-24, 2022 Aug 27.
Article in English | MEDLINE | ID: covidwho-2250282

ABSTRACT

Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis.  The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photocatalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/solvothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.

7.
Chemical Engineering Journal ; 452, 2023.
Article in English | Scopus | ID: covidwho-2246182

ABSTRACT

Metal-organic frameworks (MOFs) featuring composition and bandstructure diversity, are an emerging class of photoresponsive disinfectants. In this study, we demonstrated the superiority of core–shell arranged photoactive MOFs (prussian blue (PB) and zeolitic imidazolate framework (ZIF-8)) for pathogen inactivation in terms of biocidal efficiency and broad-spectrum sensitivity. Reactive oxygen species (ROS) production was significantly promoted after the integration of PB due to the photosensitization effect and initiation of in situ Fenton reaction. Favorably, another inactivation channel was also opened owing to the unique photothermal effect of PB. Attributed to the facilitated ROS intracellular penetration by heat, the composite outperforms not only individual component but anatase TiO2 in pathogen elimination. Specifically, the Staphylococcus aureus (S. aureus) inactivation efficiency of the composite (6.6 log) is 2, 1.8 and 5.1 times higher than that of PB (3.3 log), ZIF-8 (3.7 log) and TiO2 (1.3 log) over 45 min of simulated sunlight illumination. Significantly, the infectivity of Bacillus anthracis and murine coronavirus in droplets on composite-coated filter surface could be greatly reduced (approximately 3 log reduction in colony number/coronavirus titer) within few minutes of solar exposure, indicative of the great potential of MOF composites toward life-threatening microbial infection prevention. © 2022 Elsevier B.V.

8.
Sustainable Materials and Technologies ; 35, 2023.
Article in English | Scopus | ID: covidwho-2245255

ABSTRACT

The rapid transmission of contagious viruses responsible for global pandemic and various extraordinary risk to precious human life including death. For instance, the current ongoing worldwide COVID-19 pandemic caused by novel coronavirus (SARS-CoV-2) is a communicable disease which is transmitted via touching the contaminated surfaces and then nosocomial route. In absence of effective vaccines and therapies, antiviral coatings are essential in order to prevent or slowdown rapid transmission of viruses. In this prospective, sustainable nanotechnology and material engineering have provided substantial contribution in development of engineered nanomaterial based antiviral coated surfaces to the humanity. In the recent past, nanomaterials based on silver (Ag), titanium oxide (TiO2), copper sulfide (CuS) and copper oxide (CuO) have been modified in the form of engineered nanomaterials with effective antiviral efficacy against SARS-CoV-2. In this review, various recent fundamental aspects for fabrication of metallic nanoparticles (Ag, Ti, Cu etc.) based coated surfaces on various substrates and their antiviral efficacy to inhibit viral transmission of SARS-CoV-2 are discussed along with their respective conceptual mechanisms. The antiviral mechanism based on chemistry of engineered nanomaterials is the key outcome of this review that would be useful for future research in designing and development of more advance antiviral materials and coated surfaces in order to control of future epidemics. © 2022 Elsevier B.V.

9.
Diagnostics (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090035

ABSTRACT

The advancement in biosensors can overcome the challenges faced by conventional diagnostic techniques for the detection of the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the development of an accurate, rapid, sensitive, and selective diagnostic technique can mitigate adverse health conditions caused by SARS-CoV-2. This work proposes the development of an electrochemical immunosensor based on bio-nanocomposites for the sensitive detection of SARS-CoV-2 antibodies through the differential pulse voltammetry (DPV) electroanalytical method. The facile synthesis of chitosan-functionalized titanium dioxide nanoparticles (TiO2-CS bio-nanocomposites) is performed using the sol-gel method. Characterization of the TiO2-CS bio-nanocomposite is accomplished using UV-vis spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The electrochemical performance is studied using cyclic voltammetry (CV), DPV, and electrochemical impedance spectroscopy (EIS) for its electroanalytical and biosensing capabilities. The developed immunosensing platform has a high sensitivity with a wide range of detection from 50 ag mL-1 to 1 ng mL-1. The detection limit of the SARS-CoV-2 antibody in buffer media is obtained to be 3.42 ag mL-1 and the limit of quantitation (LOQ) to be 10.38 ag mL-1. The electrochemical immunosensor has high selectivity in different interfering analytes and is stable for 10 days. The results suggest that the developed electrochemical immunosensor can be applicable for real sample analysis and further high-throughput testing.

10.
Acta Chimica Sinica ; 80(9):1338-1350, 2022.
Article in Chinese | Web of Science | ID: covidwho-2082906

ABSTRACT

The global pandemic of COVID-19 has caused serious harm to people's healthy life and the normal operation of society. People have paid more attention to the prevention and control of microbial contamination such as bacteria and viruses. Blocking the spread of disease-causing microorganisms through indirect contact with humans through contaminated surfaces, or avoiding direct contact with them, is the primary way to protect us from harm. Current solutions include designing antibacterial and antiviral surface coatings and developing personal protective equipment made from self-cleaning films or fabrics. In this paper, the work of several widely studied metals, metal oxides, metal organic framework materials, etc. with antibacterial and antiviral functionality is reviewed, their microbial inactivation mechanisms as well as performance are summarized and discussed. In the end, the future perspectives on emerging research directions and challenges in the development of antibacterial and antiviral coatings and films are presented.

11.
Catalysts ; 12(8):856, 2022.
Article in English | ProQuest Central | ID: covidwho-2023199

ABSTRACT

Legionella pneumophila (L. pneumophila) is the causative agent of Legionnaires’ disease and Pontiac fever, collectively known as legionellosis. L. pneumophila infection occurs through inhalation of contaminated aerosols from water systems in workplaces and institutions. The development of disinfectants that can eliminate L. pneumophila in such water systems without evacuating people is needed to prevent the spread of L. pneumophila. Photocatalysts are attractive disinfectants that do not harm human health. In particular, the TiO2 photocatalyst kills L. pneumophila under various conditions, but its mode of action is unknown. Here, we confirmed the high performance of TiO2 photocatalyst containing PtO2 via the degradation of methylene blue (half-value period: 19.2 min) and bactericidal activity against Escherichia coli (half-value period: 15.1 min) in water. Using transmission electron microscopy, we demonstrate that the disinfection of L. pneumophila (half-value period: 6.7 min) by TiO2 photocatalyst in water is accompanied by remarkable cellular membrane and internal damage to L. pneumophila. Assays with limulus amebocyte lysate and silver staining showed the release of endotoxin from L. pneumophila due to membrane damage and photocatalytic degradation of this endotoxin. This is the first study to demonstrate the disinfection mechanisms of TiO2 photocatalyst, namely, via morphological changes and membrane damage of L. pneumophila. Our results suggest that TiO2 photocatalyst might be effective in controlling the spread of L. pneumophila.

12.
Catalysts ; 12(8):829, 2022.
Article in English | ProQuest Central | ID: covidwho-2023197

ABSTRACT

The transmission of pathogens via surfaces poses a major health problem, particularly in hospital environments. Antimicrobial surfaces can interrupt the path of spread, while photocatalytically active titanium dioxide (TiO2) nanoparticles have emerged as an additive for creating antimicrobial materials. Irradiation of such particles with ultraviolet (UV) light leads to the formation of reactive oxygen species that can inactivate bacteria. The aim of this research was to incorporate TiO2 nanoparticles into a cellulose-reinforced melamine-formaldehyde resin (MF) to obtain a photocatalytic antimicrobial thermoset, to be used, for example, for device enclosures or tableware. To this end, composites of MF with 5, 10, 15, and 20 wt% TiO2 were produced by ultrasonication and hot pressing. The incorporation of TiO2 resulted in a small decrease in tensile strength and little to no decrease in Shore D hardness, but a statistically significant decrease in the water contact angle. After 48 h of UV irradiation, a statistically significant decrease in tensile strength for samples with 0 and 10 wt% TiO2 was measured but with no statistically significant differences in Shore D hardness, although a statistically significant increase in surface hydrophilicity was measured. Accelerated methylene blue (MB) degradation was measured during a further 2.5 h of UV irradiation and MB concentrations of 12% or less could be achieved. Samples containing 0, 10, and 20 wt% TiO2 were investigated for long-term UV stability and antimicrobial activity. Fourier-transform infrared spectroscopy revealed no changes in the chemical structure of the polymer, due to the incorporation of TiO2, but changes were detected after 500 h of irradiation, indicating material degradation. Specimens pre-irradiated with UV for 48 h showed a total reduction in Escherichia coli when exposed to UV irradiation.

13.
J Photochem Photobiol B ; 235: 112551, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2004277

ABSTRACT

A thin, 30 µm, flexible, robust low-density polyethylene, LDPE, film, loaded with 30 wt% P25 TiO2, is extruded and subsequently rendered highly active photocatalytically by exposing it to UVA (352 nm, 1.5 mW cm-2) for 144 h. The film was tested for anti-viral activity using four different viruses, namely, two strains of Influenza A Virus (IAV), WSN, and a recombinant PR8, encephalomyocarditis virus (EMCV), and SARS-CoV-2 (SARS2). The film was irradiated with either UVA radiation (352 nm, 1.5 mW cm-2; although only 0.25 mW cm-2 for SARS2) or with light from a cool white fluorescent lamp (UVA irradiance: 365 nm, 0.047 mW cm-2). In all cases the films exhibited an average virus inactivation rate of >1.5log/h. In the case of SARS2, the rates were > 2log/h, with the rate determined using a dedicated, low intensity UVA source (0.25 mW cm-2) only 1.3 x's faster than that for a cool white lamp (UVA irradiance = 0.047 mW cm-2), which suggests that SARS2 is particularly prone to photocatalytic inactivation even under low UV irradiation conditions, such as found in a room lit with just white fluorescent tubes. This is the first example of a flexible, very thin, photocatalytic plastic film, produced by a scalable process (extrusion), for virus inactivation. The potential of such a film for use as a disposable, self-sterilising thin plastic material alternative to the common, non-photocatalytic, inert equivalent used currently for curtains, aprons and table coverings in healthcare is discussed briefly.


Subject(s)
COVID-19 , Titanium , Catalysis , Humans , Plastics , Polyethylene , SARS-CoV-2 , Ultraviolet Rays
14.
Inorganic Chemistry Communications ; : 109911, 2022.
Article in English | ScienceDirect | ID: covidwho-1996287

ABSTRACT

Surgical masks have become mandatory to protect against the COVID-19 epidemic. For this reason, the amount of waste masks has also reached severe dimensions. Turning these waste masks into functional materials (MC) in a green synthesis method is critical. In this study, carbon material from waste masks was synthesized by the hydrothermal carbonization method (HTC) and was used to increase the photocatalytic activity of TiO2. In addition, TiO2 nanoparticles were successfully synthesized by the solvothermal method. Thermo-gravimetric analysis (TGA), scanning-electron microscope(SEM), x-ray diffraction (XRD), Fourier transform- infrared spectroscopy (FT-IR), energy dispersive x-ray(EDX), transmission-electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), electrochemical-impedance spectroscopy (EIS) and Brunauer–Emmett–Teller (BET) analyzes were performed to illuminate the photocatalytic properties of the MC-TiO2 photocatalyst. In this sense, the functionality of the shell-core skeleton-based new generation carbon material was also investigated. The photocatalytic activity of the green type of photocatalyst was detected by comparing methylene blue (MB) and phenol photodegradation rates. In photocatalytic degradation experiments, both UV-A effect and visible light effect were examined. New type of photocatalyst an exhibited excellent photocatalytic effect. Superior photodegradation capacity may be referred as to the core-shell composition and functional groups of the effective carbon support material synthesized by the HTC method. In particular, the photocatalytic effect of the novel carbon support material is discussed in-depth with the proposed mechanism. With the present study, we aimed to bring a green perspective to the photocatalytic studies in the literature.

15.
ACS Biomater Sci Eng ; 8(7): 2954-2959, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1931302

ABSTRACT

The rapid emergence and global spread of the COVID-19 causing Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its subsequent mutated strains has caused unprecedented health, economic, and social devastation. Respiratory viruses such as SARS-CoV-2 can be transmitted through both direct and indirect channels, including aerosol respiratory droplets, contamination of inanimate surfaces (fomites), and direct person-to-person contact. Current methods of virus inactivation on surfaces include chemicals and biocides, and while effective, continuous and repetitive cleaning of all surfaces is not always viable. Recent work in the field of biomaterials engineering has established the antibacterial effects of hydrothermally synthesized TiO2 nanostructured surfaces against both Gram-negative and -positive bacteria. The current study investigates the effectiveness of said TiO2 nanostructured surfaces against two enveloped human coronaviruses, SARS-CoV-2 and HCoV-NL63, and nonenveloped HRV-16 for surface-based inactivation. Results show that structured surfaces reduced infectious viral loads of SARS-CoV-2 (5 log), HCoV-NL63 (3 log), and HRV-16 (4 log) after 5 h, compared to nonstructured and tissue culture plastic control surfaces. Interestingly, infectious virus remained present on control tissue culture plastic after 7 h exposure. These encouraging results establish the potential use of nanostructured surfaces to reduce the transmission and spread of both enveloped and nonenveloped respiratory viruses, by reducing their infectious period on a surface. The dual antiviral and antibacterial properties of these surfaces support their potential application in a wide variety of settings such as hospitals and healthcare environments, public transport and community hubs.


Subject(s)
COVID-19 , Nanostructures , Anti-Bacterial Agents , COVID-19/prevention & control , Humans , Plastics , SARS-CoV-2 , Titanium
16.
Journal of Testing and Evaluation ; 50(5), 2022.
Article in English | Scopus | ID: covidwho-1910735

ABSTRACT

A new airborne transmittable disease, coronavirus (COVID-19), was discovered by China in late December 2019. The virus is spread by direct contact with infected people's respiratory droplets (from coughing and sneezing) and virus-infected surfaces. COVID-19 can survive for hours on surfaces, but disinfectants can kill it. Pathogens have evolved and become resistant to conventional drugs and disinfectants. This proposed new approach using TiO2 for infectious diseases is needed to outwit these cunning saboteurs. Nanotechnology creates a unique way to modify material at the level of atoms and particles. Nanotechnology has enabled self-cleaning surfaces based on the advanced oxidation process (AOP). The outside is coated with a thin layer of nanosized TiO2 (titanium dioxide) photocatalyst. UV rays stimulate nano TiO2 and initiate AOP. The process reactions lead to the formation of oxygen vacancies in surface-bound water particle surfaces. Because of copper doping (1 % Weight of copper and 0.5 % Weight of copper), the bandgap is minimized and excitation occurs at visible light. Consequently, these photocatalyst surfaces have changed properties. Microorganisms are inactivated, excess toxins are degraded, and pollutants are removed. Toilet seats, floors, hospitals, homes, airports, railways, and road terminals can all be coated with TiO2. Microorganisms can be killed by TiO2coated or TiO2 doped with copper. These purify the air in hospitals. They can also be used to kill microorganisms on road pavements. They can also be used to coat intravenous masks and catheters to stop COVID-19. © 2022 by ASTM International

17.
Journal of Physics: Conference Series ; 2243(1):012075, 2022.
Article in English | ProQuest Central | ID: covidwho-1901011

ABSTRACT

The application of photocatalytic oxidation (PCO) in air purifiers (AP) to remove viruses, bacteria, and toxic gases in the air is intensively being studied, especially after the Covid-19 pandemic broke out. The testing method of PCO materials for AP purposes has been standardized through ISO 22197-4 (2013). However, the standard required a set of complex, high precision, and costly equipment. The present study demonstrates a simpler and low-cost test setup without compromising any accuracy in the overall result. The proposed test consists of a test chamber and mixing chamber, and sets of equipment installed in it. A 3D printer fabricated a PCO reactor, and TiO2 was coated on the surface. Formaldehyde (HCHO) is used as a sample pollutant to be observed, injected into the test chamber. Before the measurement of the concentration of HCHO, the intensity of UV A LED was measured. Then, the amount of formaldehyde concentration was monitored online by indoor air quality measurement equipment. The result shows that the intensity of UV light was enough to generate a photocatalytic oxidation reaction. After 20 minutes of reaction, the HCHO concentration inside the chamber was decreased around 21.76%.

18.
Progress in Chemistry ; 34(1):207-226, 2022.
Article in English | Web of Science | ID: covidwho-1870090

ABSTRACT

The novel coronavirus pneumonia epidemic (COVID over line 19) brings a serious threat to the development of human society and the health of human beings. Due to the stability of the severe acute respiratory syndrome coronavirus 2 ( SARS over line CoV over line 2) in urban sewage, which has become one of the virus pollution sources, it has been a focus how to eliminate the existing virus in water. SARS over line CoV over line 2 structurally consists of RNA chains and protein capsids, and thus can be inactivated via reactive oxygen species ( ROS) attack. Moreover, block of biochemical metabolism and destruction of virus structure are also effective inactivation methods for SARS over line CoV over line 2 inactivation. Nanomaterials exhibit surface and interface effects, specific microstructure and excellent physicochemical properties, implying their high application potential in SARS over line CoV over line 2 inactivation. In this study, we overall review application of nanotechnologies for SARS over line CoV over line 2 inactivation, including photocatalysis, heterogeneous catalytic oxidation, ion toxicity induced inactivation, and structural effects inactivation method. Furthermore, based on the structural composition, as well as survival and transmission characteristics of SARS over line CoV over line 2 in water environment, the application potential of various nanotechnologies for SARS over line CoV over line 2 inactivation are deeply discussed. This study can provide a theoretical basis and practical reference for the application of nanotechnology for the SARS over line CoV over line 2 inactivation and the secondary transmission interruption in water.

19.
Int J Adv Manuf Technol ; 121(1-2): 785-803, 2022.
Article in English | MEDLINE | ID: covidwho-1858966

ABSTRACT

This study investigates the mechanical response of antibacterial PA12/TiO2 nanocomposite 3D printed specimens by varying the TiO2 loading in the filament, raster deposition angle, and nozzle temperature. The prediction of the antibacterial and mechanical performance of such nanocomposites is a challenging field, especially nowadays with the covid-19 pandemic dilemma. The experimental work in this study utilizes a fully factorial design approach to analyze the effect of three parameters on the mechanical response of 3D printed components. Therefore, all combinations of these three parameters were tested, resulting in twenty-seven independent experiments, in which each combination was repeated three times (a total of eighty-one experiments). The antibacterial performance of the fabricated PA12/TiO2 nanocomposite materials was confirmed, and regression and arithmetic artificial neural network (ANN) models were developed and validated for mechanical response prediction. The analysis of the results showed that an increase in the TiO2% loading decreased the mechanical responses but increased the antibacterial performance of the nanocomposites. In addition, higher nozzle temperatures and zero deposition angles optimize the mechanical performance of all TiO2% nanocomposites. Independent experiments evaluated the proposed models with mean absolute percentage errors (MAPE) similar to the ANN models. These findings and the interaction charts show a strong interaction between the studied parameters. Therefore, the authors propose the improvement of predictions by utilizing artificial neural network models and genetic algorithms as future work and the spreading of the experimental area with extra variable parameters and levels.

20.
ACS Applied Electronic Materials ; 4(4):1732-1740, 2022.
Article in English | Scopus | ID: covidwho-1839488

ABSTRACT

Since its beginning, various countries have gone through multiple waves of surging COVID-19 infections. With the emergence of variants like Delta and Omicron, the disease is highly contagious and has the ability to spread at an alarming rate. In such scenarios, a quick and effective detection system is highly desirable. In this study, we present the concept of a surface plasmon resonance (SPR) based sensing system that can be utilized efficiently and reliably for the detection of SARS-CoV-2 antigens. The SPR system offers multiple advantages like real-time and label-free sensing of analytes and commercial systems have been in the market for more than two decades. Antireflective coatings (ARCs) have a number of application areas because of their unique properties. But they have seldom been used in the area of SPR sensing Hence, with the help of simulation, we make use of these coatings as intermediate layers and propose an enhanced sensing scheme by making use of ARCs of TiO2and SiO2and perovskite materials-BaTiO3, PbTiO3, and SrTiO3. We found that, using TiO2, SiO2, and PbTiO3, a maximum sensitivity of 392 degRIU-1can be obtained which is 5.29-fold enhancement as compared to the standard SPR arrangement using gold. © 2022 ACS Applied Electronic Materials. All right reserved.

SELECTION OF CITATIONS
SEARCH DETAIL